

Measurements of W+jets and Z+jets production cross sections at CDF

Monica D'Onofrio

IFAE-Barcelona
On behalf of the CDF collaborations

XV International Workshop on Deep Inelastic Scattering Munich, April 17th, 2007

Outline

- The Tevatron and the CDF experiment
- Boson + jets @ the Tevatron
- Results on W/Z + jets
- Summary and Conclusions

The Tevatron

Highest-energy accelerator currently operational

Peak luminosity \rightarrow 3 *10³² cm⁻² s⁻¹ Integrated luminosity/week \rightarrow ~ 25 pb⁻¹

More than **2 fb**-1 recorded on tape for each experiment (CDF and D0)

Analyses shown here use 0.3 – 1.1 fb ⁻¹

3

The CDF experiment

Recording data with high efficiency (80-85%) and making full use of detector capabilities.

Boson+jets at the Tevatron

- Test of pQCD in multijet environment:
 - high momentum transfers
 - NLO predictions available in some cases (MCFM)
- Sensitive to Underlying Event and Hadronization modeling

Fundamental processes to test **LO matrix elements** (ME) calculations **matched** with **parton showers** (PS):

 Alpgen, Sherpa, MadGraph: ME + matching algorithms for parton shower (ckkw/MLM)

Inclusive W/Z

 $M_{\rm hal}$ = (80493 \pm 48_{stat}) MeV

 $\gamma^2/dof = 86 / 48$

80

70

Very accurate measurements of W and Z masses and inclusive cross

m_T(ev) (GeV)

OPAL

ALEPH

CDF Run II (prel.)

World Average 2007

CDF II preliminary

 $-M_7 = (91190 \pm 67_{stat}) \text{ MeV}$

 $\gamma^2/dof = 34 / 38$

200

L dt ≈ 200 pb⁻¹

Enough statistics to study jet production in association with W/Z in the final states

80400

80300

W Boson Mass (MeV/c2)

 80416 ± 53

 80440 ± 51

 80413 ± 48

 80398 ± 25

80500

80600

$W(\rightarrow ev) + jets production$

Background:

- QCD (fake electrons)
- W $\rightarrow \tau \nu$, Z \rightarrow ee, DiBoson, top

- $E_{T}^{\text{ele}} > 20 \text{ GeV}$
- MET > 30 GeV
- $m_T(W) > 20 \text{ GeV/c}^2$
- E_T (jet) >15 GeV , $|\eta|$ <2.0, R=0.4
- $\Delta R(e,jet) > 0.52$

Differential cross section (E_T jets)

✓ Normalized to data

✓ Compared to different LO matrix elements + parton shower predictions with different matching techniques.

Systematic uncertainties dominated by Jet Energy Scale (JES) at low E_T , by background subtraction at high E_T

Z + jets production

- Same good features:
 - Presence of a boson ensures high Q²
 - Large BR into leptons
- No missing E_T : almost background free.
- Cross section is ~10 times less than W+jets, but with 1 fb⁻¹ of data, enough statistics to make studies on Z+jets.
- Can be used to validate MC predictions without compromising searches for new physics

We will explore all different aspects of a typical hadron-hadron collision

Event selection and backgrounds

- Z selection
 - \blacksquare E_T(ele)>25 GeV
 - $|\eta| < 1 \text{ (central)}, 1.2 < |\eta| < 2.8 \text{ (forward)}$
 - M_{ee} in [66-116] GeV/c²:
- Jet selection:
 - □ MidPoint R = 0.7
 - $p_{T}^{corr} > 30 \text{ GeV/c}, |Y| < 2.1$
 - $\triangle R(e,jet) > 0.7$
- Cross sections measured as a function of jet P_T and jet Y <u>Main background</u>:

QCD and W+jets (~ 5-10%)

Other backgrounds as ttbar, Z_{γ} , $Z \rightarrow \tau \tau + jets$ contributing for < 1%

Total Systematic Uncertainty

- Dominated by the jet energy scale uncertainty
- Total systematic uncertainties between 8% and 15% in p_T jet
- Flat in rapidity : ~ 8%

NLO pQCD prediction

MCFM

- NLO predictions up to 2 jets in final state
- CTEQ6.1M PDF
- Renormalization and factorization scale:

$$\mu_0 = M_Z^2 + p_T^2(Z)$$

- □ Jets reconstructed using MidPoint algorithm with $R_{sep} = 1.3$
- Cross section at parton level:
 - needs correction for UE and hadronization effects

Calorimeter level **Unfolding** Hadron level **UE+hadronization** corrections Parton level

→ Corrections for non-pQCD effects are made using Monte Carlo

Cross Section Z+ ≥ 1 jet

Uncertainties on theoretical calculation:

- PDF uncertainties:
 - using Hessian method: 3-10%
- Renormalization and factorization scale variation (run at $2\mu_0$ and $1/2\mu_0$):
 - 10-15% variation in the prediction
- Uncertainties on non-pQCD factors:
 - Up to 8% at low p_T jet

Good agreement between data and NLO pQCD

Cross Section vs Y(jets)

- Z+≥1 jet
- Data corrected to hadron level.
- Good agreement with NLO predictions with nonperturbative contributions
- A number of measurements are performed to validate our modeling of the Underlying Event and fragmentation

Underlying Events in Z+jets

Jet shapes

sensitive to fragmentation and underlying event modeling.

→ very accurately described by Pythia Tune A (same that also describes the jet shapes in inclusive jet production)

Energy flow $z^{\circ} = 0$

p_T flow of particles in the transverse plane w.r.t the Z Boson

- > Jet is described very accurately
- Very good agreement in the part dominated by the underlying event

CDF Run II Preliminary

Jet Multiplicity

Cross Section w.r.t. the number of jets (inclusive)

- Good agreement between data and NLO pQCD.
- ±10% uncertainty from renormalization and factorization scale (factor 2 and ½ variation)
- k-factor (NLO/LO) is rather flat and around ~1.4
- ~ 15% more jets due to the non-pQCD effects.

Boson+jets as bkg. for new Physics

- Important backgrounds to
 - top production, Higgs searches
 - SUSY searches → an example

<u>Signature:</u> energetic jets + Missing transverse Energy (undetected LSP)

Squark/gluino pair production in mSUGRA scenario (R-parity conservation)

Preliminary MC studies (1999) at the LHC suggested that SUSY could be discovered via the jet+MET channel within weeks after LHC started → Since then, many changes in tools used for background

Summary

- Tevatron and CDF experiment performing well:
 - \sim 2 fb⁻¹ data on tape (~ 80-85% efficiency)
- Boson+jets are fundamental to test pQCD, underlying Event and new LO ME calculations + Parton Shower Monte Carlo generators.
- Measurements on W+jets and Z+jets production shown.
 - W+jets cross section:
 - compared to ME+PS Monte Carlo
 - Z+jets cross section:
 - Compared to NLO pQCD calculations.
 - \mathbf{p}_{T} , Y and Jet multiplicity distributions in inclusive Z+jets production.
 - Non-pQCD corrections are sizeable (~15% more jets).
- Important background for top, Higgs and SUSY searches

Jet reconstruction

Final state partons are revealed through collimated flows of hadrons called jets

Measurements → at hadron level Theory prediction → parton level_

Need to have common and unambiguous definition used for theory and experiments.

- → Jet reconstruction algorithms:
 - infrared and collinear safe
 - jet direction = parent parton direction

Two main types of jet algorithms:

- Cone Algorithm
 - → JETCLU (Run I like) and MIDPOINT
- K_T algorithm

JES Systematic uncertainties

Total systematic uncertainties for JES

→ between 2 and 3% as a function of corrected transverse jet momentum

$W \rightarrow ev + jets$

- Jet Multiplicity
 - hadron level cross section

- Ongoing comparison to:
 - NLO prediction
 - at parton level
 - no parton to hadron corrections applied.
 - LO matrix elements

Jet correlations

Differential cross section w.r.t. di-jet ΔR in the W+2 jet inclusive sample

LO predictions normalized to data integrated cross sections

→ Shape comparison only

Differential cross section w.r.t. di-jet invariant mass in the W+2 jet inclusive sample

